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Abstract
Acoustic data plays a pivotal role in scientific and engineering research across
various fields, including biology, communications, and Earth science. This study
investigates recent advancements in acoustics, specifically focusing on machine
learning (ML) and deep learning. ML, with its statistical techniques,
autonomously identifies patterns in data. Unlike traditional acoustics, ML
uncovers complex relationships among features and labels using extensive
training data. Applying ML to acoustic phenomena like human speech and
reverberation shows promising results. Additionally, this paper reviews acoustic
signal processing for bowel sound analysis, emphasizing noise reduction,
segmentation, feature extraction, and ML techniques. The integration of advanced
signal processing and ML holds significant potential.
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1. Introduction
Acoustic data play a pivotal role in various scientific domains, including the interpretation of human speech
and animal vocalizations, ocean source localization, and imaging geophysical structures in the ocean. Despite
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the broad applications, challenges such as data corruption, missing measurements, reverberation, and large
data volumes complicate the analysis. Machine learning (ML) techniques have emerged as a powerful solution
to address these challenges, offering automated data processing and pattern recognition capabilities. ML in
acoustics is a rapidly evolving field, with significant potential to overcome intricate acoustics challenges
(Abaeikoupaei and Osman, 2023; Abrams et al., 2008; Ackermann et al., 2023; Akhtar et al., 2023; Allen et al.,
1977; Allen and Berkley, 1979; Almeida et al., 2019; Anagnostopoulos et al., 2015; Anguera et al., 2007; Bianco
et al., 2019).

ML, a family of techniques for detecting and utilizing patterns in data, proves beneficial in predicting
future data or making decisions from uncertain measurements. It can be categorized into supervised and
unsupervised learning, each serving distinct purposes. The historical focus in acoustics on high-level physical
models is juxtaposed with the success of data-driven approaches facilitated by ML, indicating a shift towards
hybrid models combining advanced acoustic models with ML (Breining et al., 1999; Burgess and Granato,
2007; Carter and Bidelman, 2023; Caspary et al., 1995; Chen et al., 2014; Chibelushi et al., 2002; Corcoran et al.,
2023).

In this dynamic landscape, ML in acoustics has witnessed remarkable progress, offering superior
performance compared to traditional signal processing methods. However, challenges, such as the need for
large datasets and the interpretability of ML models, persist. Despite these challenges, ML holds considerable
potential in advancing acoustics research, as demonstrated. Including references, e.g. (Davis and Johnsrude,
2003; Denby et al., 2010; Didier et al., 2023; Dietzen et al., 2023; Ding and Simon, 2013; Elliott and Theunissen,
2009; Ermilov et al., 2009; Fang et al., 2023).

The historical context of stethoscopes in medical practice, particularly in listening to the heart, lungs, and
bowel sounds. Scientific analysis of bowel sounds dates back to the early 1900s, with observations and
recordings dating even further. The sounds produced by the gastrointestinal tract offer valuable insights into
the anatomy and physiology of the human gut, potentially revealing activities of the microbiome (Gabler et al.,
2023; Gajecki et al., 2023; Gandour et al., 2004; Gfeller et al., 2007; Ghitza, 1994; Gillis et al., 2023; Goli and Par,
2023).

The study further discusses the intersection of big data analytics and artificial intelligence in diverse
applications, including bowel sound analysis. Artificial intelligence models, driven by advancements in

Figure 1: Time Domain Acoustic Signal Recorded from the Gut
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computer processing power, have found utility in areas such as disease diagnosis and civil engineering. The
application of these technologies to identify and analyze bowel sounds represents a notable advancement,
offering a deeper understanding of gut functions and potential applications in healthcare (Hamsa et al., 2023;
Hansen, 1996; Hansen and Hasan, 2015; Hickok and Poeppel, 2007; Hollfelder et al., 2023; Huang et al., 2023).

The discussion concludes by highlighting improvements in acoustic signal processing methods, particularly
in noise reduction and signal enhancement. Pioneering work in the 1970s utilized computers to analyze
bowel sounds, marking the beginning of a journey that incorporated advanced signal processing techniques
like Fourier transformation and short time Fourier transformation. These advancements culminated in the
automatic detection of bowel sounds, showcasing the evolution of acoustic signal processing techniques in
bowel sound applications (Figure 1).

2. Literature Review

2.1. Acoustic Signal Processing and Machine Learning Fundamentals
Machine Learning (ML) operates on a data-driven paradigm, capable of uncovering intricate relationships
between features that conventional methods may overlook. While classic signal processing techniques rely on
provable performance guarantees and simplifying assumptions, ML, particularly Deep Learning (DL), has
demonstrated enhanced performance in various tasks. However, the increased flexibility of ML models
introduces complexities, impacting both performance guarantees and model interpretability. ML models often
necessitate substantial training data, though the requirement for ’vast’ quantities is not mandatory to leverage
ML techniques. Despite challenges, ML’s benefits may outweigh the issues, especially when high performance
is essential for a specific task (Johnson et al., 2005; Jung et al., 2020; Khoria et al., 2023; Kong et al., 2023; Krause
and Braida, 2004).

Inputs and Outputs: In ML, the goal is often to train a model to produce a desired output (y) given inputs (x)
(Figures 2 and 3). The supervised learning framework, represented by the equation

y = f (x) +

involves predicting outputs based on labeled input and output pairs. Here, x represents N features, y represents
P desired outputs, f(x) is the predicted output, and  is the error. Training an ML model requires numerous
examples, with X representing the inputs and Y representing the corresponding outputs. Supervised learning

Figure 2: Model Generalization (Color Online)
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Figure 3: Model Generalization (Color Online)

focuses on predicting specific outputs, while unsupervised learning aims to discover patterns in data without
explicit output specifications. Unsupervised learning often involves learning a model that approximates the
features themselves (Krishna and Semple, 2000; Langner, 1992; Lee and Narayanan, 2005; Lenk et al., 2023;
Little et al., 2007).

2.2. Signal Identification and Enhancement
Sounds result from mechanical deformation, generating energy waves detected by the ear or transducer.
Acoustic signal processing and ML techniques contribute to understanding these phenomena (Liu and
Vicario, 2023; Luthra, 2023; Magnuson and Nusbaum, 2007; Markovich et al., 2009; Martin and Boothroyd,
1999).

1) Time Domain Signal: The raw data, a time domain signal, is crucial for acoustic analysis. Features like
SNR, duration, and event count are extracted, aiding in signal quality assessment. Filtering methods,
including adaptive filtering, enhance signals by removing unwanted components.

2) Frequency Domain Signal: Transforming signals into the frequency domain through Fourier analysis
reveals information unobservable in the time domain. The FFT technique provides features like centroid
frequency and spectral bandwidth, but may lose some time domain information.

3) Time-Frequency Domain Signal: Simultaneous time and frequency information is obtained using Short-
Time Fourier Transform (STFT) or Wavelet Transform (WT). Spectrograms from STFT enable speech
recognition and noise suppression. WT, known for noise suppression, offers varied time and frequency
domain information.

3. Advanced Signal Processing

3.1. Supervised Learning and Linear Regression in the Context of Acoustic Signal Processing
Supervised learning, a fundamental aspect of machine learning (ML), aims to establish a mapping from a set
of inputs to desired outputs through labeled input-output pairs. In this discussion, we focus on real-valued
features and labels, where the N features in x can be real, complex, or categorical. The corresponding supervised
learning tasks are divided into two subcategories: regression and classification. Regression addresses scenarios
where y is real or complex valued, while classification pertains to cases with categorical y.
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The central focus in ML methods lies in finding the function f, particularly using probability tools when
practical. The supervised ML task can be articulated as maximizing the conditional distribution p(y|x), with
the Maximum A Posteriori (MAP) estimator providing a point estimate for y, denoted as yb = f (x).

Linear regression serves as an illustrative example of supervised ML. In the context of Direction of Arrival
(DOA) estimation in beamforming for seismic and acoustic applications, we represent the relationship between
the observed Fourier-transformed measurements x and the DOA azimuth angle y using a linear measurement
model. The optimization problem seeks values of weights w that minimize the difference between the observed
and predicted measurements, effectively solving the linear regression problem.

The ensuing Bayesian treatment involves formulating the posterior of the model using Bayes’ rule, leading
to a MAP estimate for the weights. Depending on the choice of the probability density function for the weights,
solutions may vary. A popular choice, the Gaussian distribution, results in the classic L2-regularized least
squares estimate, incorporating a regularization parameter for stability.

This detailed exposition highlights the foundational principles of supervised learning and its application
in linear regression within the specific domain of acoustics, illustrating the seamless integration of theoretical
ML concepts with practical signal processing challenges (Merchant et al., 2015; Mesgarani et al., 2014; Meyer,
2018; Minelli et al., 2023).

1) Advanced Signal Processing in Bowel Sound Analysis: Acoustic signal processing in the context of bowel
sound analysis involves a multi-step sequence encompassing data acquisition, preprocessing, and
subsequent analysis. The reviewed literature reveals a diverse array of approaches and methodologies,
with certain commonalities in the overall processing flow.

2) Data Acquisition: To record abdominal sounds, specialized transducers, such as electret condenser
microphones or piezoelectric transducers, are designed to convert acoustic energy into electrical signals.
Electronic stethoscopes, including designs like the JABES digital stethoscope and 3M Littmann 3200,
demonstrate the versatility of these transducers. Additionally, innovative approaches, such as 3D-printed
stethoscope heads with built-in electronics, reflect evolving design paradigms.

3) Preprocessing and Analysis: The preprocessing stage involves denoising, filtering, and segmentation of
acoustic signals, often employing techniques like adaptive filtering and enveloping. The choice of window
functions, such as rectangular, Hamming, and Hann, plays a crucial role in the slicing of acoustic recordings
into small samples.

4) Bowel Sound Analysis: From the early 2000s, wavelet transforms (WTs) have enabled advanced feature
extraction, coinciding with the integration of machine learning methods. Researchers, exemplified by
groups led by Hadjileontiadis et al., have made substantial progress in noise reduction and signal
enhancement for bowel sounds. Various machine learning methods, including decision trees, dimension
reduction, and artificial neural networks, have been applied to characterize bowel sounds (Nagarajan et
al., 2023; Peelle and Wingfield, 2016; Poeppel, 2001).

In acoustics, the Fourier Transform is often used to analyze the frequency components of a signal. The
Fourier Transform of a function f (t) is defined as:

    i tF f t e dt
 


  ...(1)

where F() is the Fourier Transform of f(t), and  is the angular frequency.

Let’s strudy a sound signal f(t) given by:

f(t) = Asin(2f0t) ...(2)

where A is the amplitude and f0 is the frequency of the sound.

The Fourier Transform of f(t) is then calculated as:

   0sin 2 i tF A f t e dt 
 


  ...(3)

This integral can be solved to find the expression for F().
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The literature review underscores the dynamic landscape of acoustic signal processing in bowel sound
analysis, with researchers adopting diverse approaches across the processing stages. From innovative data
acquisition methods to sophisticated preprocessing techniques and the application of machine learning, the
field demonstrates a blend of traditional signal processing principles and contemporary methodologies. The
convergence of theoretical insights and practical implementations serves as a foundation for continued
advancements in acoustic signal processing for bowel sound analysis (Poeppel, 2001; Poluboina et al., 2023;
Randall, 2017; Ravanelli et al., 2018).

3.2. Parallelization of All-Pairs Algorithm (OpenMP)

The provided algorithm outlines an approach to acoustic signal processing with parallelization using OpenMP
(Algorithm 1).

1) Main Function: acousticSignalProcessing():

• This function serves as the entry point for the acoustic signal processing algorithm.

• It is marked for parallelization using the #pragma omp parallel for directive, which instructs the compiler
to parallelize the loop that iterates over the model collection. For each model in the collection, the
function calls processModel(i, signal).

2) Processing Each Model: processModel(i: model, signal):

• This function is also marked for parallelization using the #pragma omp parallel for reduction (+ :
result[i].amplitude) directive.

• It contains a nested loop that iterates over the signal collection for each model. For each pair of models
(i, j), where j is not equal to i, it calculates the similarity between the models using the calculateSimilarity(i,
j) function.

• The amplitude of the result for the current model (result[ i].amplitude) is adjusted based on the calculated
similarity using the adjustAmplitude(i, j, similarity) function.

Algorithm 1: Acoustic Signal Processing Algorithm (OpenMP)
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3) Calculating Similarity: calculateSimilarity(i, j):

• The specific details of how the similarity is calculated are not provided in the algorithm and should be
implemented according to the requirements of the acoustic signal processing application.

• This function is a placeholder for calculating the similarity between two models, i and j.

4) Adjusting Amplitude: adjustAmplitude(i, j, similarity):

• This function is a placeholder for adjusting the amplitude of a model based on the calculated similarity.

• Again, the exact method of adjusting the amplitude is not specified and needs to be implemented based
on the application’s requirements.

3.3. Parallelization of All-Pairs Algorithm (CUDA)
Sequential Barnes-Hut Algorithm with Acoustic Signal Processing

1) Main Function: acousticBarnesHut():

• This function represents the entry point for the integrated algorithm, combining he Sequential Barnes-
Hut structure with acoustic signal processing.

• It orchestrates the sequential execution of three main steps: building the tree (build_tree()), computing
mass distribution (compute_mass_distribution()), and calculating forces (compute_force()).

2) Building the Tree: build_tree():

• The function initializes the tree structure, preparing it for the insertion of acoustic models.

• It iterates over each acoustic model in the dataset and inserts it into the root node using the
insert_to_node() function.

3) Inserting Models into Nodes: insert_to_node(new_model):

• This function is responsible for placing a new acoustic model into the appropriate quadrant of the
Barnes-Hut tree.

• It checks the number of existing models in a node. If there is more than one model, it recursively traverses
the tree to find the appropriate quadrant for the new model. If there’s only one model, it divides the node
into quadrants, placing the existing and new models accordingly.

• If no models exist in the node, it directly assigns the new model as the existing model.

4) Computing Mass Distribution: compute_mass_distribution():

• This function calculates the mass distribution within each quadrant of the Barnes-Hut tree.

• If there is only one model in a quadrant, the center of mass and mass are directly assigned from that
model. Otherwise, it recursively calculates the mass distribution for child quadrants, aggregating the
mass and weighted center of mass.

5) Calculating Forces: calculate_force(target):

• This function computes the acoustic forces acting on a target model.

• If there’s only one model in the quadrant, the force is calculated using the acoustic_force() function
between the target and the model. If the quadrant size is below a certain threshold (lD < theta), the force
is computed using the acoustic force model.

• If the quadrant is larger, the algorithm recursively calculates forces for child nodes and aggregates
them.

6) Computing Forces for all Models: compute_force():

• This function iterates over all acoustic models in the dataset and computes the forces acting on each
model using the root_node.calculate_force(model) function.
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• If there’s only one model in the quadrant, the force is calculated using the acoustic_force() function
between the target and the model. If the quadrant size is below a certain threshold (lD < theta), the force
is computed using the acoustic force model.

• If the quadrant is larger, the algorithm recursively calculates forces for child nodes and aggregates
them.

3.4. Sequential Barnes-Hut Algorithm
It represents the integrated algorithm with the Sequential Barnes-Hut structure and Acoustic Signal Processing.
The algorithm includes functions for building the tree, inserting models into nodes, computing mass
distribution, calculating forces, and overall coordination of the acoustic signal processing with the Barnes-
Hut algorithm.

The integrated algorithm merges the Sequential Barnes-Hut structure, designed for efficient gravitational
force calculations, with acoustic signal processing. The Barnes-Hut tree structure optimizes the computation
of forces between acoustic models, enhancing the algorithm’s scalability and efficiency in handling large
datasets. The acoustic signal processing steps involve building the tree, distributing mass, and calculating
forces, offering a comprehensive solution for analyzing and simulating acoustic interactions within a given
system.

Algorithm 2: Algorithm Part 1
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Figure 4: Barnes-Hut Tree Structure

Algorithm 3: Algorithm Part 2

Algorithm 4: Algorithm Part 3
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4. Conclusion
In this comprehensive review, we have presented an overview of Machine Learning (ML) theory, with a
particular focus on deep learning (DL), and explored its diverse applications across various acoustics research
domains. While our coverage is not exhaustive, it is evident that ML has been a catalyst for numerous recent
advancements in acoustics. This article aims to inspire future ML research in acoustics, emphasizing the
pivotal role of large, publicly available datasets in fostering innovation across the acoustics field. The
transformative potential of ML in acoustics is substantial, with its benefits amplified through open data
practices (Sainath et al., 2017; Schonwiesner et al., 2005; Souden et al., 2010; Stephen et al., 2023; Stevens, 2002).

Despite the acknowledged limitations of ML-based methods, their performance surpasses that of
conventional processing methods in many scenarios. However, it is crucial to recognize that ML models, being
datadriven, demand substantial representative training data for optimal performance. This is viewed as a
trade-off for accurately modeling complex phenomena, given the often high capacity of ML models. In contrast,
standard processing methods, with lower capacity, rely on training-free statistical and mathematical models
(Stowell et al., 2015; Tandon and Choudhury, 1999; Telkemeyer et al., 2009; Tezcan et al., 2023).

This review suggests a paradigm shift in acoustic processing from hand-engineered, intuition-driven
models to a data-driven ML approach. While harnessing the full potential of ML, it is essential to build upon
indispensable physical intuition and theoretical developments within established sub-fields like array
processing. The development of ML theory in acoustics should be undertaken while preserving the foundational
physical principles that describe our environments. By blending ML advancements with established principles,
transformative progress can be achieved across various acoustics fields (Ufer and Blank, 2023; Viola and
Walker, 2005).

Upon on bowel sound analysis, several conclusions emerge. The choice of sensors for data acquisition,
including electret condenser microphones and piezoelectric transducers, depends on research constraints.
Advanced signal processing techniques, such as wavelet transforms (WTs) since the early 2000s, have enabled
complex feature extraction. Machine learning methods have found application in bowel sound analysis, with
varying approaches such as decision trees, dimension reduction, and clustering algorithms (Voola et al., 2023;
Wakita, 1973; Wu et al., 2003; Xu et al., 2002; Xu et al., 2023; Yang et al., 1992; Zmolikova et al., 2023).
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